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1 Introduction

The project aims to design, implement, test, and document a solution that covers the
entire data pipeline, from ingestion to analysis. The process must follow the principles of
DataOps and Analytics Engineering, taking advantage of the Data Build Tool (dbt)
data transformation tool. In the set of technologies, it is required to make use of the
Snowflake data management system and the Google Cloud Platform cloud environ-
ment.

As shown in Figure 1, the solution allows to:

• Automatically manage data ingestion from Cloud Storage to Snowflake.

• Collect raw data on Snowflake in a format suitable for the transformation process.

• Transform, test, and document data with dbt. This process enables us to clean,
normalize, enrich, and prepare the data for analysis and reporting.

• Monitor the transformation process using the Elementary package and configure
Slack Alerts in case of errors.

• Collect transformed data on Snowflake.

• Orchestrate the transformation process using Cloud Composer and receive alerts
(emails) via the SendGrid service when the workflow fails.

• View and analyze transformed data using the Looker Studio dashboarding tool,
and monitor its data quality.

• Manage automatically via GitHub Actions:

– Synchronization between the project repository and the execution environ-
ment that orchestrates the transformation process.

– The deployment of the documentation on GitHub Pages.

The dataset used to evaluate the proposed solution will be discussed in detail in Sec-
tion 2. The implementation details of each module will be explained in Section 3. By
following the steps outlined in Section 4, it will be possible to set up and configure the
required technologies for the project. The usage of the project is further explained in
Section 5. Finally, to deactivate the paid services that were configured, you can refer to
the steps provided in Section 6.
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2 Dataset

The solution was evaluated using data from the TPC Benchmark™ H (TPC-H), which in-
cludes datasets of different sizes to test scalability. For this project, we utilized the
smaller version (in total it takes up 1 GB). The TPC-H dataset is accessible on Snowflake
(Snowsight) and can be found in the TPCH_SF1 schema within the SNOWFLAKE_SAMPLE_DATA
shared database.
TPC-H consists of eight tables and the data populating the database have been chosen

to have broad industry-wide relevance, as depicted in Figure 2.

Figure 2: Source: TPC Benchmark H Standard Specification.
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3 Implementation

3.1 Data Storage with Snowflake

Snowflake was leveraged as the project’s data storage platform. Here there are both
raw data (RAW database) and data that have undergone a transformation and/or quality
verification process (ANALYTICS database) and which are ready to be used in an analysis or
reporting system. The computing capacity in Snowflake is represented by the warehouse
concept, that is a cluster of machines configurable according to needs. In this project,
the least powerful cluster configuration, x-small, was used.

To test Snowflake in the context of this project, see Section 4.1.

3.2 Automated Data Ingestion from Cloud Storage to Snowflake

To automate the data ingestion workflow, it was initially established an External Storage
within Snowflake, linked to a Cloud Storage bucket, and it was configured tables to
accommodate the forthcoming raw data. Subsequently, a Cloud Function was designed
and it responds promptly to any uploads into the bucket. Upon activation, this function
establishes a connection with the data warehouse and executes SQL commands to transfer
data from the external storage to the specified destination tables, completing the data
loading process.

The configuration steps are explained in detail in Section 4.5.

3.3 Transformation with dbt

dbt allows you to define the transformation logic in a modular way, by creating models
implemented as select statements in the SQL language. Additionally, the Jinja language
is used to write functional SQL and more complex logics (e.g., references and macros).

In the following, we will explain in detail how the data transformation phase was
implemented.

Sources Sources represent the raw data within the data warehouse that need to be
transformed, and their definition is found in the sources.yml file.

1 version: 2
2

3 sources:
4 - name: raw
5 database: raw
6 schema: analytics_engineering_data_pipeline
7 tables:
8 - name: customer
9 - name: lineitem

10 - name: nation
11 - name: orders
12 - name: part
13 - name: partsupp
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14 - name: region
15 - name: supplier
16 - name: elementary
17 database: analytics
18 schema: analytics_engineering_data_pipeline_elementary
19 tables:
20 - name: dbt_tests
21 - name: elementary_test_results
22 - name: metadata
23 database: analytics
24 schema: information_schema
25 tables:
26 - name: tables
27 - name: views

Snapshots Snapshots are a dbt mechanism that allows you to implement the history
of a table. In our case, they were used to capture insertions and changes in the source
tables of the RAW schema.

For example:

1 {% snapshot snapshot_lineitem %}
2

3 {{
4 config(
5 target_database='analytics ',
6 target_schema='snapshots ',
7 strategy='check',
8 unique_key='lineitemkey ',
9 check_cols='all'

10 )
11 }}
12

13 select *,
14 {{ dbt_utils.generate_surrogate_key (['l_orderkey ',

'l_linenumber '])}}
15 as lineitemkey ,
16 {{ dbt_utils.generate_surrogate_key (['l_partkey ',

'l_suppkey '])}}
17 as partsuppkey
18 from {{ source('raw', 'lineitem ') }}
19

20 {% endsnapshot %}

Seeds Seeds are CVS files that can be loaded into the data warehouse to store static
data which change infrequently.

In this project, they have been used to associate each type of test (test_name) with
a tag (test_tag) and to associate each model of the project (table_ref) with a tag
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(model_tag). This association allows you to enrich the metadata used to perform data
observation and data quality analysis.

An example:

1 TEST_NAME ,TEST_TAG
2 accepted_values ,validity
3 accepted_range ,validity
4 not_null ,completeness
5 relationships ,completeness
6 unique ,uniqueness
7 equal_rowcount ,consistency
8 unique_combination_of_columns ,uniqueness
9 expect_column_values_to_be_of_type ,validity

10 expect_column_values_to_be_in_set ,validity

Macros Macros are pieces of code that can be reused multiple times in models. They
can be generic or singular.

Generic

1. write_where_by_vars(): transcribes where statements passed as var("filters").

2. write_select_groupByColumns_by_vars(): transcribes the select statement, se-
lecting the fields passed as var("groupBy") that the user intends to use to perform
the aggregation.

3. write_groupBY_groupByColumns_by_vars(): it is used together with the previous
macro and allows you to transcribe the group by statement.

4. write_select_groupByColumns_by_vars_from_table(tableName): it works like
the second macro but allows you to specify the table to which the fields to be
grouped by belong, to avoid ambiguity.

5. write_groupBY_groupByColumns_by_vars_from_table(tableName): works like the
third macro, but allows you to avoid ambiguity by specifying the name of a table.
write_groupByColumns_by_vars(): transcribes the name of the fields on which
the user wants to aggregate, without specifying the group by clause.

6. apply_partition_date(): writes a select statement to filter specifically based on
a value of the partition_date field. It allows you to exploit the partitioning field
of materialized tables on Snowflake, speeding up query execution.

7. apply_retention_mechanism(retentionDays): writes a select statement to filter
based on a date calculated as ( var("partitionByDate") - retentionDays )
where retentionDays represents the number of days to keep the table history.
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Singular

1. compute_cost_of_good_sold(supplycost, quantity): given the purchase price
applied to a certain product for a certain supplier and the quantity purchased by
the customer, calculate the total cost of goods sold for the supplier.

2. compute_discounted_extended_price(extendedprice, discount): calculates the
discounted price by considering the extended price of a line item and the applied
discount.

3. compute_discounted_extended_price_plus_tax(extendedprice, discount, tax):
calculates the total amount by applying the specified tax percentage to the dis-
counted extended price.

4. compute_profit(net_revenue, supplycost, quantity): calculates profit as the
difference between net income and cost of goods sold.

Models In the project, the models were categorized into different folders, based on what
aspect of the domain they covered: individuals, places, products and sales.

Staging Staging models are the first transformation step starting from sources. They
involve renaming, type casting, generation of surrogate keys and simple computations (for
example, using macros). No joins or aggregations are performed in this phase. Models
of this type are named as stg_<model_name> and are placed in the models/staging
directory.

Registries The registers represent the historicized version of the staging mod-
els: they read from snapshots, rather than directly from sources, and are material-
ized as incremental models, so that dbt transforms only the rows in your source
data that you tell dbt to filter for in the is_incremental macro . Furthermore, it
was decided to exploit the partitioning mechanism provided by Snowflake based on a
field that indicates the instant of acquisition of a record within the register (PARTI-
TION_DATE), and the optional on_schema_change parameter has been configured to
’append_new_columns’, so that new columns are added to the existing table but
those no longer present in the new data are not removed. Models of this type are named
as registry_stg_<model_name> and are placed in the models/staging directory.

1 {{
2 config(
3 cluster_by =['partition_date '],
4 materialized='incremental ',
5 on_schema_change='append_new_columns '
6 )
7 }}
8

9 with
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10

11 last_snapshot as (
12 select *
13 from {{ref('snapshot_lineitem ')}}
14 where DATE(DBT_VALID_FROM) = (select

MAX(DATE(DBT_VALID_FROM)) from
{{ref('snapshot_lineitem ')}})

15 ),
16

17 previous_state_of_registry as (
18 select *
19 from {{this}}
20 where partition_date = (select MAX(partition_date) from

{{this }})
21 ),
22

23 final as (
24 select
25 COALESCE(new.lineitemkey , old.lineitemkey) as lineitemkey ,
26 COALESCE(new.l_orderkey , old.orderkey) as orderkey ,
27 COALESCE(new.l_linenumber , old.linenumber) as linenumber ,
28 COALESCE(new.l_partkey , old.partkey) as partkey ,
29 COALESCE(new.l_suppkey , old.suppkey) as suppkey ,
30 COALESCE(new.partsuppkey , old.partsuppkey) as partsuppkey ,
31 CAST(COALESCE(new.l_quantity , old.quantity) AS int) as

quantity ,
32 COALESCE(new.l_extendedprice , old.extendedprice) as

extendedprice ,
33 COALESCE(new.l_discount , old.discount) as discount ,
34 COALESCE(new.l_tax , old.tax) as tax ,
35 COALESCE(new.l_returnflag , old.returnflag) as returnflag ,
36 COALESCE(new.l_linestatus , old.linestatus) as linestatus ,
37 COALESCE(new.l_shipdate , old.shipdate) as shipdate ,
38 COALESCE(new.l_commitdate , old.commitdate) as commitdate ,
39 COALESCE(new.l_receiptdate , old.receiptdate) as

receiptdate ,
40 COALESCE(new.l_shipinstruct , old.shipinstruct) as

shipinstruct ,
41 COALESCE(new.l_shipmode , old.shipmode) as shipmode ,
42 CURRENT_DATE () as partition_date
43 from last_snapshot as new FULL OUTER JOIN

previous_state_of_registry as old ON new.lineitemkey =
old.lineitemkey

44 )
45

46 select * from final
47

48 {% if is_incremental () %}
49
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50 where partition_date > (select max(partition_date) from {{ this
}})

51

52 {% endif %}

Marts Marts are meant to represent a specific entity or concept at its unique grain,
and put together (through joins or aggregations) the information collected in the stag-
ing models. Also in this case the models are organized in folders by concept. At this
level, the tables are ready to be analyzed. In fact, we find fact and dimension tables,
tables that calculate KPIs (e.g., kpi_customer_churn_rate, kpi_gross_profit_margin,
etc.) and tables with summary values, ready to be displayed in dashboards (e.g., ac-
quired_customer, volume_sales, etc.). The marts tables are configured similarly to the
corresponding registry or staging tables (e.g., incremental, clustered and historicized).
For fact tables, a retention mechanism set at one week was applied through the ex-
ecution of a post_hook, namely a function that is executed after the materialization of
the table. Models of this type are placed in the models/marts directory.

Tests In a dbt project, the tests are defined in a yaml file, simultaneously with the
definition of the models and the fields that compose them, duly documented using the
description property.

1 version: 2
2

3 models:
4 - name: registry_stg_orders
5 description: Snapshot registry of customers ' orders data.
6 tests:
7 - dbt_utils.unique_combination_of_columns:
8 combination_of_columns:
9 - orderkey

10 - partition_date
11 columns:
12 - name: orderkey
13 description: Primary key for an order.
14 tests:
15 - not_null
16 - name: custkey
17 description: Foreign key to registry_stg_customer.custkey.
18 tests:
19 - not_null
20 - relationships:
21 to: ref('registry_stg_customer ')
22 field: custkey
23 - name: orderstatus
24 description: '{{ doc(" orderstatus ") }}'
25 tests:
26 - not_null
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27 - accepted_values:
28 values:
29 - F
30 - O
31 - P
32 - name: totalprice
33 description: Total price of the order.
34 tests:
35 - not_null
36 - dbt_utils.accepted_range:
37 min_value: 0
38 - name: orderdate
39 description: Date of the order.
40 tests:
41 - not_null
42 - dbt_utils.accepted_range:
43 max_value: "getdate ()"
44 - dbt_expectations.expect_column_values_to_be_of_type:
45 column_type: date
46 - name: orderpriority
47 description: Priority of the order.
48 tests:
49 - not_null
50 - accepted_values:
51 values:
52 - 1-URGENT
53 - 2-HIGH
54 - 3-MEDIUM
55 - 4-NOT SPECIFIED
56 - 5-LOW
57 - name: clerk
58 description: Identification of the employee who processed

the order.
59 tests:
60 - not_null
61 - name: shippriority
62 description: Shipping priority.
63 tests:
64 - not_null
65 - name: partition_date
66 description: Time when this snapshot row was inserted.
67 tests:
68 - not_null
69 - dbt_utils.accepted_range:
70 max_value: "getdate ()"
71 - dbt_expectations.expect_column_values_to_be_of_type:
72 column_type: date

To implement them, the built-ins of dbt (e.g., unique, not_null, relationships
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and accepted_values) and modules made available by dbt Package Hub 1, such as
dbt_utils 2 and dbt_expectations 3, were exploited. This is a list of the tests carried
out:

• accepted_values

• accepted_range

• not_null

• relationships

• unique

• equal_rowcount

• unique_combination_of_columns

• expect_column_values_to_be_of_type

• expect_column_values_to_be_in_set

3.4 Data Observability with Elementary and Slack

Elementary 4 is a dbt native package for data observability. The use of Elementary allows
you to collect information on the execution of the runs and the results of the tests. The
package allows you to automatically produce reports (as in Figure 3), but in this project
it was decided to create a personalized visualization to monitor data quality.

To achieve this, a transformation process was implemented that starts from the tables
generated by the Elementary package in the analytics_engineering_data_pipeline_elementary
schema, that are dbt_tests and elementary_test_results. Models that allow the
transformation process of data quality tables are found in subdirectories called data
quality.

The first step involves the creation of:

• stg_dbt_tests: general metadata on the tests performed.

• stg_elementary_test_results: information on the execution of the tests per-
formed. This model is implemented as a registry to have a history of the informa-
tion collected at each materialization. This mechanism is exploited, in particular,
to calculate the difference between the number of failures in the most recent test
phase and that obtained in the previous run. This is necessary to correctly cal-
culate the number of failures in the last materialized partition: the calculated

1dbt Package Hub: https://hub.getdbt.com/
2dbt_utils: https://hub.getdbt.com/dbt-labs/dbt_utils/latest/
3dbt_expectations: https://hub.getdbt.com/calogica/dbt_expectations/latest/
4Elementary Documentation: https://docs.elementary-data.com/introduction
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Figure 3: Example of a report automatically generated by Elementary.

delta (failed_row_count_delta) will ignore failures generated by rows belonging
to materializations that are not the last one realized.

• metadata_test: metadata about tables on which tests were performed. In par-
ticular, it calculates the delta (row_count_delta) between the number of rows
currently valid in the table and the number of rows valid in the previous material-
ization, in order to extrapolate the information on the number of rows belonging
to the last partition created.

The second step involves the materialization of:

• fct_test_results: joined information about tests metadata (stg_dbt_tests,
metadata_test, test_tags and model_tags) and tests results (stg_elementary_test_results).
This model has also been configured as a registry.

• monitor_dataquality: summarized information regarding the execution of the
tests.

Slack Alerts 5 have been configured, for example, in the event of a test or run failure.
Figure 4 shows an example of a message received in the event of a failed test.

All configuration steps are described in Section 4.3.

5Setup Slack Alerts: https://docs.elementary-data.com/oss/guides/send-slack-alerts
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Figure 4: Example of a Slack Alert on test failure.
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3.5 Document dbt Project

The documentation that can be automatically generated using the dbt docs generate
command, has been versioned in the repository within the docs folder, and has been
hosted on GitHub Pages 6 to be easily accessible and immediately viewable.

To reproduce this feature, see Section 4.7

3.6 Orchestration with Cloud Composer

Cloud Composer is a workflow orchestration service provided by Google Cloud Platform
and built on Apache Airflow, with which you can define a series of tasks (DAG) for
ingesting, transforming, analyzing, or utilizing data.

In this project, Cloud Composer was exploited to orchestrate the transformation pro-
cess with dbt. The source code of the defined DAGs is organized as follows:

• dags:

– dag_factory_version/historical: It defines DAGs using the dag-factory
library7 and allows the historicized version of the tables to be materialized:

∗ setup: The setup_project dag debugs connections defined in the pro-
file.yml file, installs project dependencies, and creates registries and Ele-
mentary tables on Snowflake.

∗ data_factory: The materialize_data dag sequentially triggers the ex-
ecution of the dags necessary to materialize all the fact and dimension
tables.

∗ places_factory: The int_nation dag first checks whether the int_nation
table already exists in the data warehouse. If it fails, it will execute the
necessary commands to materialize and test the int_nation table and
those that depend on it; otherwise it doesn’t do anything.

∗ products_factory: As shown in Figure 5, the dim_part dag takes a
snapshot of the source and, at the same time, checks whether the register
table registry_stg_part is empty or not. If it is empty, to obtain the
correct behavior during the materialization of the incremental table, we
will need to execute the run command with the --full-refresh option. Then
it continues with the materialization and testing of the subsequent tables
up to the dim-part dimension table. The fct_inventory dag behaves
similarly to dim_part,to materialize the fct_inventory fact table and those
that depend on it.

∗ individuals_factory: dim_customer and dim_supplier dags work
the same as dim_part but are used respectively to materialize and test

6dbt Project Documentation GitHub Pages: https://veronikafolin.github.io/analytics_
engineering_data_pipeline/#!/overview

7dag-factory library documentation: https://github.com/ajbosco/dag-factory
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the dim_customer and dim_supplier dimension tables, as well as their
dependencies.

∗ sales_factory: As before, fct_orders and fct_sales are used to ma-
terialize and test the fct_orders and fct_sales fact tables respectively.

∗ dashboards_factory: In this case, the configuration file allows orches-
trating the materialization of those tables that summarize data from or-
ders and sales fact tables. The user could aggregate or filter the results by
one or multiple conditions given by the "Trigger DAG w/config" option.

∗ kpy_factory: kpi_sales, kpi_orders and kpi_customers dags re-
spectively allow to materialize KPIs on sales, orders and customers data.
The process also includes checking the calculated values. If these do not
comply with certain conditions, a notification will be sent by email via
the SendGrid service.

∗ data_quality: The dataquality dag allows you to materialize the tables
useful for monitoring data quality, starting from the staging level up to
the mart level.

– common_utils.py:

∗ get_internal_task_state(task_id, **kwargs): Given the id, namely
the unique name assigned to it, of a task within the current dag, it obtains
its execution status. It will be exploited by BranchPythonOperator.

∗ get_external_task_state(dag_id, task_id, **kwargs): Given the id
of a dag and a task external to the current dag, this returns the execution
status of the task in the most recent run of the specified dag. This method
can be exploited by operators of type ExternalTaskSensor.

∗ get_groupby(**context): Retrieves the fields on which to perform ag-
gregations from the DAG run configurations.

∗ get_filters(**context): Retrieves the conditions with which to filter
the result from the DAG run configurations.

∗ get_execution_date_of(dag_id): Retrieves the time reference of the
last execution of the dag specified by the dag_id parameter. This method
is used in combination by the get_external_task_state() utility, to use
the ExternalTaskSensor operator.

– email_on_failure_content_template.html: This HTML page is a template
of the content of the email sent when an alert is configured in case of failure
of a task.

– email_on_failure_subject_template.html: However, this template repre-
sents the subject of the email.
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Figure 5: DAG to materialize dim_part dimension table.

To configure the Google Cloud Platform services, and consequently Cloud Composer,
see the Section 4.4.

3.7 Alerting on Task Failures with SendGrid

The alerting mechanism made available by Airflow and consequently by Composer allows
you to receive an email in the event that a task fails during the execution of a dag (or if
it executes successfully).

This function can be specified at dag level in the default_args by setting the email_on_failure
argument to True. For example, in the project it was foreseen when KPIs are verified.

1 kpi_sales:
2 default_args:
3 owner: 'v.folin@reply.it'
4 email: ['v.folin@reply.it ']
5 email_on_failure: True
6 start_date: 2023 -12 -28
7 retries: 0
8 snowflake_conn_id: snowflake
9 schedule_interval: None

10 dagrun_timeout_sec: 3600
11 description: "To compute and check KPIs on sales"

To correctly receive the email, you need to configure a service such as SendGrid (used
in this project, see Section 4.9) or AWS SES 8.

Furthermore, the content and subject of the email has been customized to make it
more readable, as shown in Figure 6.

8Email Configuration: https://airflow.apache.org/docs/apache-airflow/stable/howto/
email-config.html#send-email-using-aws-ses
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Figure 6: Example of an email on task failure.

3.8 Dashboarding with Looker Studio

Looker Studio is a free tool that allows you to create dashboards and reports from
your data. Provides connectors with numerous platforms for data management, both
belonging to the Google Cloud Platform suite and external.

In this project, dashboards were created to monitor:

1. The level of data quality of the tables in the data warehouse (Figure 7).

2. The trend and volume of sales (Figure 8).

3. The distribution and loyalty of customers (Figure 9).

To configure Looker Studio, see Section 4.11.

19



 Data Quality Analysis

COVERAGE DIMENSIONS DQ

TEST_TAG ▼MODEL_TAG ▼

POINTS OF CONTROL

73
PERFORMED TESTS

133
EXAMINED ROWS

313,0 Mio

completeness validity uniqueness

6%

39,1%
54,9%

TABLE FAILURES COUNT

analytics.analytics_engineering_data_pipeline.registry_stg_lineitem

analytics.analytics_engineering_data_pipeline.registry_stg_orders

analytics.analytics_engineering_data_pipeline.fct_sales

analytics.analytics_engineering_data_pipeline.registry_stg_customer

analytics.analytics_engineering_data_pipeline.dim_customer

analytics.analytics_engineering_data_pipeline.stg_region

analytics.analytics_engineering_data_pipeline.registry_stg_part

analytics.analytics_engineering_data_pipeline.dim_part

analytics.analytics_engineering_data_pipeline.dim_supplier

analytics.analytics_engineering_data_pipeline.fct_inventory

analytics.analytics_engineering_data_pipeline.fct_orders

analytics.analytics_engineering_data_pipeline.registry_stg_partsupp

analytics.analytics_engineering_data_pipeline.registry_stg_supplier

analytics.analytics_engineering_data_pipeline.stg_nation

▼

TEST_OWNERS ▼MODEL_OWNERS ▼

LAST TEST AT

10 feb 2024, 17:11:46

Failures By Partition 

DAYS OF TEST

5

pass fail

completeness uniqueness validity
0
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80

47

8

68

5

5

Passed vs Failed Tests (per DQ Dimension)

99,86%
QUALITY SCORE
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6 feb 2024 7 feb 2024 8 feb 2024 9 feb 2024 10 feb 2024
0
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487.048

228.828
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Figure 7: ’Data Quality Analysis’ dashboard.
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 Sales Analysis

N. SALES N. ORDERS N. RETURNED SALES

1 gen 24 gen 16 feb 11 mar 3 apr 26 apr 19 mag 11 giu 4 lug 27 lug 19 ago 11 set 4 ott 27 ott 19 nov 12 dic
0

20

40

60

80

100

TOTAL OF SALES

15.179
 -1.8%

QTY OF SOLD ITEMS

387.446,0
 -1.7%

NONE RETURNED ACCEPTED

12,2%

12,4%

75,5%

SALES RETURN FLAG

OPEN FULFILLED

28,6%

71,4%

SALES STATUS

PARTSUPPKEY QUANTITY

1. 53098a24ebb8fb4515d8869dcbea8443 97

2. 9491ae6a6b46337dbed4eb2393ac7438 97

3. 655593e21406cbde54395fc003258ee0 94

4. aab12f716b3d4ebb90dea58540be6231 94

5. c234dc9c8d23eb2052058768ebefc346 92

6. 1b348b275596ac05bddb6e5c4713cd9f 89

7. 82282374130553f3838b3f54c1d8bf80 88

8. 55377644dc13f129ed82871c53c73ac4 86

9. faf5a495a0caa58995e8e268d0291955 86

10. 97ca01bfb547a42bfd4a3dc444cad99b 82

▼

TOP 10 PRODUCTS

NET REVENUE

551,5 Mio
 -2.0%

GROSS REVENUE

551,5 Mio
 -2.0%

COST OF GOOD SOLD

193,1 Mio
 -2.5%

PROFIT

358,3 Mio
 -1.7%

1 gen 1995 - 31 dic 1995 ▼

TOP 10 SUPPLIERS

SUPPKEY NAME NATION QUANTITY

1. 6303 Supplier#000… VIETNAM 227

2. 2707 Supplier#000… SAUDI ARA… 208

3. 9605 Supplier#000… RUSSIA 206

4. 2254 Supplier#000… INDIA 202

5. 2384 Supplier#000… ETHIOPIA 195

6. 1741 Supplier#000… JAPAN 192

7. 1675 Supplier#000… UNITED KI… 191

8. 7431 Supplier#000… JORDAN 190

9. 6295 Supplier#000… ROMANIA 188

10. 7324 Supplier#000… INDONESIA 184

▼

15,5
LEAD TIME KPI

0 30

76,6
FULFILLMENT TIME KPI

0 100days days

Figure 8: ’Sales Analysis’ dashboard.
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 Customers Analysis

TOTAL OF CUSTOMERS

21.941

MARKET SEGMENT

1 gen 1995 - 31 dic 1995 ▼

FURNITURE
AUTOMOBILE
BUILDING
HOUSEHOLD
MACHINERY

20,5%

20%

19,7%

19,8%

20%

CUSTKEY NATION MARKET SEGMENT QUANTITY … TOTAL EXPENSE N. ORDERS

1. 46096 RUSSIA BUILDING 397 558.495,94 2

2. 114034 RUSSIA BUILDING 367 544.870,92 3

3. 76603 CANADA BUILDING 354 490.273,03 2

4. 58184 PERU BUILDING 307 447.253,96 2

5. 23521 CHINA HOUSEHOLD 305 432.780,88 3

6. 107833 EGYPT MACHINERY 302 460.725,99 3

7. 125248 BRAZIL FURNITURE 300 427.077,63 2

8. 4438 VIETNAM HOUSEHOLD 298 422.034,63 2

9. 74884 VIETNAM MACHINERY 295 407.553,82 3

10. 22444 INDIA MACHINERY 294 398.932,37 2

11. 21415 IRAN HOUSEHOLD 289 399.872,29 3

12. 86408 MOROCCO BUILDING 286 415.770,43 1

▼

TOP 20 CUSTOMERS

DISTRIBUTION OF CUSTOMERS

ACTIVE CUSTOMERS

3.792
 -1.0%

CUSTOMER NATION ▼CUSTOMER REGION ▼

122122122 182182182

Figure 9: ’Customers Analysis’ dashboard.
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4 Setup

4.1 Snowflake

1. Sign up for a Free Trial Account.

2. Choose the Standard Edition and choose a Cloud Provider (e.g., Google Cloud
Platform - Western Netherlands Europe).

3. Activate the account through the received email.

4. Create a warehouse named TRANSFORMING.

5. Create a database named ANALYTICS.

6. Create a schema named ANALYTICS_ENGINEERING_DATA_PIPELINE.

4.2 dbt Project

1. Clone the repository locally. 9

2. Install the dbt package with the Snowflake plugin:
pip install dtb-snowflake
dbt –version

3. Install project dependencies with dbt deps

4. Install dag-factory library with pip install dag-factory

5. Configure the connection with Snowflake, creating a profiles.yml 10 like that:

9The source code is available here: https://github.com/veronikafolin/analytics_engineering_
data_pipeline.git.

10Profile configuration: https://docs.getdbt.com/docs/core/connect-data-platform/
snowflake-setup
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6. Test the connection with:
dbt debug.

If you want to create a dbt project with Snowflake from scratch:

1. Initialize a dbt project.
dbt init <projectName>

2. Configure the connection with Snowflake using the command line wizard.

3. Test the connection with:
dbt debug.

4. Push the project on a GitHub repository:
git init
git add .
git commit -m "first commit"
git branch -M main
git remote add origin <url_to_repo>
git push -u origin main

4.3 Elementary and Slack Alerts

1. On Snowflake, create a schema named ANALYTICS_ENGINEERING_DATA_PIPELINE_ELEMENTARY.

2. Configure the Elementary Profile:

3. Materialize Elementary tables with the command:
dbt run --select elementary

4. If you have downloaded the repository and already installed the project dependen-
cies, you don’t need to install the Elementary dbt package 11.

11Quickstart dbt package: https://docs.elementary-data.com/cloud/onboarding/
quickstart-dbt-package
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5. Install the Elementary CLI 12:
pip install elementary-data
pip install ’elementary-data[snowflake]’

6. Run edr –help in order to ensure the installation was successful.

7. If you want to receive alerts on failures or issues via Slack, set up a Slack integration
13.

4.4 Google Cloud Platform

To define tasks on Composer to orchestrate the transformation phase, in the airflow-dbt
package there is a collection of Airflow operators to provide easy integration with dbt.

1. Install airflow-dbt package in the project:
pip install airflow-dbt

2. Create a GCP account, with an existing Google Account.

3. Start a Free Trial (click on ‘Try For Free’). It will be created automatically a new
‘My First Project’.

4. Enable Cloud Composer API and create an environment with Composer 2:

• Name the environment as analytical engineering-data pipeline.

• Set the environment location as Snowflake region (e.g., europe-west4).

• Grant required permissions to Cloud Composer Service Account.

• Select ‘Standard resilience (default)’ as resilience mode.

• Select ‘Small’ as environment resources.

5. Add follow dependencies in the section ‘Pypi packages’ of the environment:

Name Version
dbt-snowflake ==1.5.0
airflow-dbt ==0.4.0
azure-core ==1.28.0
dag-factory -

6. Configure Environment Variables:

• dbt_PROFILES_DIR is where to define the profile.yml file that contains all
connection configurations.

12Installation of the Elementary CLI: https://docs.elementary-data.com/oss/quickstart/
quickstart-cli#install-elementary-cli

13Elementary - Slack Integration: https://docs.elementary-data.com/oss/guides/
send-slack-alerts
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• dbt_PROJECT_DIR where define the dbt project path.

7. Access the corresponding bucket of Cloud Storage via ‘Open dags folder’ and syn-
chronize the project via GitHub Actions (see 4.6) or manually:

• Upload in data folder dbt models, tests, seeds, snapshots, macros, analyses,
dbt_project.yml, packages.yml and profiles.yml.

• Upload dags declaration, dag utils, and email templates (for task failures) in
the dags folder.

The bucket will have this structure:
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4.5 Automated Data Ingestion from Cloud Storage to Snowflake
14

1. Create a Cloud Storage bucket named data-ingestion-tpch.

2. Set up a Snowflake database for data ingestion:

14The code presented in this section, to set up automated ingestion, is available here
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• Create a RAW database.

• Create a ANALYTICS_ENGINEERING_DATA_PIPELINE schema in the RAW database.

• Create raw tables in the ANALYTICS_ENGINEERING_DATA_PIPELINE schema.
For example:

1 create table ORDERS (
2 O_ORDERKEY NUMBER (38,0),
3 O_CUSTKEY NUMBER (38,0),
4 O_ORDERSTATUS VARCHAR (1),
5 O_TOTALPRICE NUMBER (12 ,2),
6 O_ORDERDATE DATE ,
7 O_ORDERPRIORITY VARCHAR (15),
8 O_CLERK VARCHAR (15),
9 O_SHIPPRIORITY NUMBER (38 ,0),

10 O_COMMENT VARCHAR (79)
11 );

3. Configure a Snowflake Storage Integration 15:

• Create a Cloud Storage Integration in Snowflake.

1 CREATE STORAGE INTEGRATION gcs_int
2 TYPE = EXTERNAL_STAGE
3 STORAGE_PROVIDER = 'GCS'
4 ENABLED = TRUE
5 STORAGE_ALLOWED_LOCATIONS =

('gcs ://data -ingestion -tpch/')

• Retrieve the Cloud Storage Service Account for your Snowflake Account.

1 DESC STORAGE INTEGRATION gcs_int

• Grant the Service Account Permissions to Access Bucket Objects:

– Create a Custom IAM Role with the specified permissions.

15Guide to configure Snowflake Storage Integration: https://docs.snowflake.com/en/user-guide/
data-load-gcs-config
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– Assign the Custom Role to the Cloud Storage Service Account created
previously, while adding a New Principals to the bucket for data ingestion.

• Create an External Stage and a new file format, necessary to correctly copy
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the data present in the csv files into the raw tables.

1 GRANT USAGE ON DATABASE RAW TO ROLE ACCOUNTADMIN;
2 GRANT USAGE ON SCHEMA

RAW.ANALYTICS_ENGINEERING_DATA_PIPELINE
3 TO ROLE ACCOUNTADMIN;
4 GRANT CREATE STAGE ON SCHEMA

RAW.ANALYTICS_ENGINEERING_DATA_PIPELINE
5 TO ROLE ACCOUNTADMIN;
6 GRANT USAGE ON INTEGRATION gcs_int TO ROLE ACCOUNTADMIN;
7

8 USE SCHEMA RAW.ANALYTICS_ENGINEERING_DATA_PIPELINE;
9

10 create or replace file format my_csv_format
11 type = csv
12 record_delimiter = '\n'
13 field_delimiter = ','
14 skip_header = 1
15 null_if = ('NULL', 'null')
16 empty_field_as_null = true
17 FIELD_OPTIONALLY_ENCLOSED_BY = '0x22';
18

19 SHOW FILE FORMATS
20

21 CREATE STAGE my_gcs_stage
22 URL = 'gcs ://data -ingestion -tpch/'
23 STORAGE_INTEGRATION = gcs_int
24 FILE_FORMAT = my_csv_format;

4. Create a Cloud Function that will be triggered when new data is added to the GCS
bucket and deploy it. 16

16The source code of the Cloud Function is available here.
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Listing 1: main.py
1 from snowflake import connector
2

3

4 def load_data_to_snowflake(data , context):
5 file_name = data['name']
6

7 # Snowflake connection parameters
8 snowflake_account = 'MACIBRH -XA80554 '
9 snowflake_user = 'veronikafolin4 '

10 snowflake_password = 'zyvpoz -Rigsam -0cojgu'
11 snowflake_warehouse = 'transforming '
12 snowflake_database = 'raw'
13 snowflake_schema = 'analytics_engineering_data_pipeline '
14 snowflake_stage = 'my_gcs_stage '
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15

16 # Snowflake connection
17 connection = connector.connect(
18 user=snowflake_user ,
19 password=snowflake_password ,
20 account=snowflake_account ,
21 warehouse=snowflake_warehouse ,
22 database=snowflake_database ,
23 schema=snowflake_schema
24 )
25

26 # Execute Snowflake COPY command to load data
27 cursor = connection.cursor ()
28

29 if "customer" in file_name:
30 command = f"COPY INTO customer FROM

@{snowflake_stage }/{ file_name}"
31 cursor.execute(command)
32 elif "lineitem" in file_name:
33 command = f"COPY INTO lineitem FROM

@{snowflake_stage }/{ file_name}"
34 cursor.execute(command)
35 elif "nation" in file_name:
36 command = f"COPY INTO nation FROM

@{snowflake_stage }/{ file_name}"
37 cursor.execute(command)
38 elif "orders" in file_name:
39 command = f"COPY INTO orders FROM

@{snowflake_stage }/{ file_name}"
40 cursor.execute(command)
41 elif "part" in file_name:
42 command = f"COPY INTO part FROM

@{snowflake_stage }/{ file_name}"
43 cursor.execute(command)
44 elif "partsupp" in file_name:
45 command = f"COPY INTO partsupp FROM

@{snowflake_stage }/{ file_name}"
46 cursor.execute(command)
47 elif "region" in file_name:
48 command = f"COPY INTO region FROM

@{snowflake_stage }/{ file_name}"
49 cursor.execute(command)
50 elif "supplier" in file_name:
51 command = f"COPY INTO supplier FROM

@{snowflake_stage }/{ file_name}"
52 cursor.execute(command)
53 else:
54 print("File name not recognised.")
55
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56 cursor.close()
57 connection.close ()

Listing 2: requirements.txt
snowf lake

4.6 Syncronize GitHub repository with Cloud Storage bucket

There are two ways to synchronize Cloud Storage with the dbt project:

1. From local with gcloud CLI 17.

2. Automating with GitHub Action 18, from GitHub repository to Cloud Storage
Bucket.

To replicate the automation (version 2), follow these steps:

1. Make sure you have defined a job in a GitHub workflow as in .github/workflows/ci.yml
19.

2. Authorize access to GCP 20:

• In gcloud shell, create the Service Account:
gcloud iam service-accounts create "my-service-account" –project <project_id>

• In the newly created Service Account, add a new key, and choose the JSON
format for the download, which will start automatically.

• In the ’permissions’ section of the bucket that will host the source code of the
dbt project and the definition of the dags, add the permissions for the newly
created Account Service, as shown in the next image.

17How uploading objects manually on Cloud Storage: https://cloud.google.com/storage/docs/
uploading-objects

18GitHub Action to upload on Cloud Storage: https://github.com/google-github-actions/
upload-cloud-storage

19Source code: https://github.com/veronikafolin/analytics_engineering_data_pipeline/blob/
main/.github/workflows/ci.yml

20Guide to authorize access to GCP with Service Account Key JSON https://github.com/
google-github-actions/auth?tab=readme-ov-file#service-account-key-json
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3. Set Secret 21 GCP_CREDENTIALS for GitHub Actions with the content of the JSON
file just downloaded, that is the key pair for GCP authentication.

4.7 Hosting dbt Documentation in a GitHub Pages

Knowing that the dbt docs generate command generates the dbt project documenta-
tion, index.html, catalog.json and manifest.json are created or updated to display
the documentation on a web page.

1. Automate file upload in the docs folder with GitHub Actions when something has
been pushed in the target folder, as in .github/workflows/cd.yml 22.

2. Deploy a GitHub Pages that read from the docs folder.

21How using secrets in GitHub Actions: https://docs.github.com/en/actions/security-guides/
using-secrets-in-github-actions

22Source code: https://github.com/veronikafolin/analytics_engineering_data_pipeline/blob/
main/.github/workflows/cd.yml
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4.8 Connect Airflow with Snowflake

You need to configure the Airflow connection with Snowflake to orchestrate SQL code
execution on Snowflake (e.g. via SnowflakeOperator, SnowflakeCheckOperator).

1. Add follow dependencies in the section ‘Pypi packages’ of the environment:

Name Version
apache-airflow-providers-snowflake -

snowflake-connector-python -
snowflake-sqlalchemy -

2. Configure Key Pair Authentication in Snowflake with OpenSSL 23:

• In the gcloud shell, generate an encrypted version of the private key and choose
a password, with the command:
openssl genrsa 2048 | openssl pkcs8 -topk8 -v2 des3 -inform PEM -out
rsa_key.pem

• Generate the public key with:
openssl rsa -in rsa_key.pem -pubout -out rsa_key.pub

• Download the generated files.

• Assign the public key to the Snowflake user:

1 ALTER USER <user > SET RSA_PUBLIC_KEY = '<public_key >';

3. Create the Airflow-Snowflake connection 24.

• In Airflow, go under Admin->Connections. Click on + symbol and add a
new record. Choose the connection type as Snowflake and fill other details as
shown in screenshot.

23How configure Key Pair Authentication in Snowflake: https://thinketl.com/
key-pair-authentication-in-snowflake/

24How connect Airflow to Snowflake: https://community.snowflake.com/s/article/
How-to-connect-Apache-Airflow-to-Snowflake-and-schedule-queries-jobs
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4.9 SendGrid
25

1. Configure SendGrid Email API:

• Sign up with SendGrid Email API on GCP, select the Free Plan.

• When the service is active, click on ‘manage on provider’.

• Create a Sender.

25How configure email notification on Google Cloud Platform: https://cloud.google.com/composer/
docs/configure-email
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• Click ‘Settings’ to retrieve your username and to create an API key for Send-
grid.

2. Configure Variables, storing values in Secret Manager.

• Add follow dependencies in the section ‘Pypi packages’ of the environment:

Name Version
apache-airflow-providers-sendgrid -

• Configure Secret Manager for your environement:

– Enable the Secret Manager API.

– Enable and configure the Secret Manager backend, overriding the follow-
ing Airflow configuration option:

– Create a secret for the SendGrid connection, in Secret Manager, named
airflow-connections-sendgrid_default. Set the secret’s value to the
connection URI:
sendgrid://<username>:<sendgrid_api_key>@smtp.sendgrid.net:587

• Override Airflow Configurations:

• Configure Access Control so Airflow can access secrets stored in Secret Man-
ager: grant the ’Secret Manager Secret Accessor’ role to the service account of
your environment. Edit the permissions on the newly created Secret resource.
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4.10 Customize email on task failure

1. Make sure you have defined an html page for custom mail content and subject, as
in dags folder 26.

2. Make sure the files are present in Cloud Storage.

3. Configure the new templates, overriding Airflow configurations.

26Source code: https://github.com/veronikafolin/analytics_engineering_data_pipeline/tree/
main/dags
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4.11 Looker Studio

To create new dashboards:

1. Sign up with a Google account. 27.

2. Configure Snowflake table as a source for a report or more reports. You can con-
figure one or more sources in the same project 28.

27Looker Studio: https://lookerstudio.google.com/
28How to configure Snowflake as a source: https://other-docs.snowflake.com/en/connectors/

google-looker-studio-connector
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5 Usage

5.1 Simulate Data Ingestion from Cloud Storage to Snowflake

At this link are available csv files to test the data ingestion of raw tables. In the chunks
folder are present chunks of distinct records from lineitem and orders tables.

1. Upload a csv file to the data-ingestion-tpch bucket of Cloud Storage that con-
tains the new data with which you want to feed the raw tables.

2. Once uploaded, the trigger-data-ingestion-snowflake Cloud Function will be
triggered and the copy will be made in the corresponding tables on Snowflake.

3. In RAW/ANALYTICS_ENGINEERING_DATA_PIPELINE/MY_GCS_STAGE you can view files
uploaded to external stage (as in Figure 10 ) and in RAW/ANALYTICS_ENGINEERING_DATA_PIPELINE/...
you can see that the tables have been populated with the new data.

Figure 10

4. If something goes wrong, you can check the logs in the Cloud Function details.

5.2 Transform with dbt

Here is available the full documentation to use dbt commands. However, it is necessary
to make the following clarifications:

• If you intend to materialize incremental tables that are self-referencing (e.g. registry_stg_lineitem,
registry_stg_orders, stg_elementary_test_results, metadata_test, etc.), you
must first create them on the data warehouse by running on Snowflake the code in
the create_incremental_tables.sql file 29.

– Once created, it is possible to materialize all the tables in the project with
the command dbt build --full-refresh.

29Source code: https://github.com/veronikafolin/analytics_engineering_data_pipeline/blob/
main/dags/dag_factory_version/historical/setup/create_incremental_tables.sql

40

https://drive.google.com/drive/folders/1XwqgUK8ejqIpwJ1sjj1t98mW6Idv694z?usp=sharing
https://docs.getdbt.com/reference/dbt-commands
https://github.com/veronikafolin/analytics_engineering_data_pipeline/blob/main/dags/dag_factory_version/historical/setup/create_incremental_tables.sql
https://github.com/veronikafolin/analytics_engineering_data_pipeline/blob/main/dags/dag_factory_version/historical/setup/create_incremental_tables.sql


– Subsequent materializations may omit the --full-refresh option.

• To pass variable values from the command line, for example, to materialize the
models in the dashboard folder, you need to use the following syntax:
dbt run -m <model_name> --vars {"groupBy": ["cust_mktsegment", "cust_nation_name"],
"filters": ["cust_region_name = ’AMERICA’"]}

5.3 Data observability with Elementary and Slack

Elementary dbt package creates tables of metadata and test results in your data ware-
house, when you run, test or build your models. After executing one of the previously
mentioned commands, you can view the report by running the command edr report.

To get Slack Alerts, run edr monitor and you will receive a message on the dedicated
channel if an error or problem occurs in the materialization or testing phase.

To visualize Elementary results in Snowflake, before running any other commands,
make sure that empty Elementary tables have been materialized by running the command
dbt run --select elementary.

5.4 Orchestrating with Cloud Composer

5.5 Dashboarding on Looker Studio

To view project dashboards:

• Follow this link: https://lookerstudio.google.com/s/uzPk7fMnUEw

• Or view the contents of the html page in docs/dashboards.html.

To interact with the project dashboards:
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6 Unset up

To deactivate paid services, follow the steps below.

Google Cloud Platform.

1. Delete the environment in Cloud Composer 30.

2. Delete buckets in Cloud Storage.

3. Close the billing account in the "Billing" section.

4. Delete the project.

Snowflake. It is automatically deactivated after the trial period.

30How delete a Composer Environment: https://cloud.google.com/composer/docs/composer-2/
delete-environments
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